

Review: MIPS Design Principles

Simplicity

- Fixed size instructions.
- Small number of instruction formats.
- Opcode always the first 6 bits.

Smaller is faster

- Limited instruction set.
- Limited number of registers in register file.
- Limited number of addressing modes.
- Make the common case fast
- Arithmetic operands from the register file only.
- Allow instructions to contain immediate operands and branch targets.

Arithmetic for Computers

Operations on integers

- Addition and subtraction.
- Multiplication and division.
- Dealing with overflow.

Floating-point numbers

- Representation and operations.
- Dealing with overflow and underflow.

Binary Representation

This binary number
01011000000101010010111011100111
represents the decimal quantity:
$0 \times 2^{31}+1 \times 2^{30}+0 \times 2^{29}+\ldots+1 \times 2^{0}$
An unsigned 32-bit word can represent 2^{32} numbers between 0 and $2^{32}-1$

If we wish to also represent negative numbers, we can represent 2^{31} positive numbers (including zero) and 2^{31} negative numbers.

Positive and Negative Numbers

$00000000000000000000000000000000_{\text {two }}=0_{\text {ten }}$
$00000000000000000000000000000001_{\text {two }}=1_{\text {ten }}$
$0111111111111111111111111111{1111_{\text {two }}=2^{31}-1}$
$10000000000000000000000000000000_{\text {two }}=-2^{31}$
$10000000000000000000000000000001_{\text {two }}=-\left(2^{31}-1\right)$
$10000000000000000000000000000010_{\mathrm{two}}=-\left(2^{31}-2\right)$
$1111111111111111111111111111{1110_{\text {two }}=-2}$
$1111111111111111111111111111{11111_{\text {two }}=-1}$

2's Complement Form

The same hardware can be used for 2's complement addition and subtraction without any conversions.

```
00000000000000000000000000000000000 two }=\mp@subsup{0}{\mathrm{ ten }}{
```



```
0111 1111 1111 1111 1111 1111 1111 1111 two = 231-1
1000000000000000000000000000 0000 two }=-\mp@subsup{2}{}{31
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 ~ t w o ~ = - ( 2 3 1 - 1 )
1000000000000000000000000000000010two =-(231-2)
    ...
11111111 1111 1111 1111 1111 1111 1110 two = -2
1111 1111 1111 1111 1111 1111 1111 11114two = -1
```


Example

Compute the 32-bit 2's complement representations for the following decimal numbers:
$5,-5,-6$

5: 00000000000000000000000000000101
-5: 11111111111111111111111111111011
-6: 11111111111111111111111111111010

Signed / Unsigned

The hardware recognizes two formats:

- Unsigned (corresponding to the C declaration unsigned int)

All numbers are positive, a 1 in the most significant bit represents magnitude, not sign.

- Signed (C declaration is signed int or just int)

Numbers can be +/- , a 1 in the MSB means the number is negative.
This distinction enables us to represent twice as many numbers when we're sure that we don't need negatives.

MIPS Instructions

Consider a comparison instruction:
slt \$t0, \$t1, \$zero
where $\$ \mathrm{t} 1$ contains the 32 -bit number: $111101 \ldots 01$

What gets stored in \$t0?
The result depends on whether $\$$ t1 is a signed or unsigned number - the compiler/programmer must track this and accordingly use either slt or sltu
slt \$t0, \$t1, \$zero stores 1 in \$t0
sltu \$t0, \$t1, \$zero stores 0 in \$t0

Sign Extension

Occasionally, 16-bit signed numbers must be converted into 32-bit signed numbers - for example, when doing an add with an immediate operand.
The conversion is simple: take the most significant bit and use it to fill up the additional bits on the left - known as sign extension.

So 2^{10} goes from 0000000000000010 to 00000000000000000000000000000010

And -2 ${ }^{10}$ goes from 1111111111111110 to
11111111111111111111111111111110

Alternative Representations

The following two intuitive number representations were discarded because they required additional conversion steps before arithmetic could be performed on the numbers.

- Sign-and-magnitude: The most significant bit represents +/- and the remaining bits express the magnitude.
- One's complement: -x is represented by inverting all the bits of x.
- Both representations above suffer from two zeroes.

Recap

2's complement representation.
Signed vs. Unsigned number representation.

